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Abstract

We consider the problem of determining the free surface of a liquid in a capillary tube,
and of a liquid drop, sitting first orn a horizontal plane and then on more general surfaces.
With some modifications, the method applies to the study of pendent drops and of rotating
drops as well.

Introduction

Several capillarity phenomena, such as the rise of water in tubes of narrow bore, and the
formation of liquid drops or bubbles, can conveniently be studied from the general point of
view of the Calculus of Vvariations. Such a possibility, which clearly originates in the
energy-minimizing character of the observed equilibrium configurations, has the remarkable
advantage of providing a unified treatment of the mathematical guestions that arise in a
variety of particular phenomena.

By using a well-known argument, based on the principle of virtual work, one is led to a
variational formulation of the physical problem, in which a certain functional (representing
the global energy of the system under consideration) has to be minimized, subject to some
“natural” constraints, such as prescribed boundary conditions or fixed volume constraints.
In general, the energy functional will consist of a "surface integral" plus a "volume inte-
gral": the latter corresponds to body forces, of which gravity is a typical representative,
while the former results, for example, from the consideration of the forces acting on the
surface of separation between the ligquid and the gas surrounding it.

Now, the point is, that the classical definition of "surface area" is rather inadequate
for treating this type of problem, mainly because it applies to smooth or Lipschitz-conti-
nuous surfaces only - a class which is not closed under the usual limit operations.

The difficulties arising from the presence of a surface integral become even more evi-
dent when compared with the relatively simple treatment of the corresponding volume
integral, which is generally well-defined on measurable sets and enjoys (at least in the
simplest cases) nice variational properties.

A satisfactory theory of surface area for a general class of surfaces of codimension one
in RN, n > 2 , has been developed by E. De Giorgi in the fifties.! It is a remarkable fact
that some classical guestions, concerning the existence and regularity of capillary surfaces,
have been answered only guite recently, using the variational techniques introduced by De
Giorgi, or even more general methods pertaining to the field of Geometric Measure Theory.

The definition of "functions of Bounded Variation", together with the main results of
the corresponding BV-functions theory, will be recalled in the next section. As a first
application of the theory, we shall discuss in section 2 the "standard" capillary problem,
i.e. the determination of the free surface of a liquid in a thin tube of general cross
section, which results from the simultaneous action of surfaee tension, boundary adhesion
and gravity. It turns out that in this case the existence of the solution surface depends
heavily on the validity of a simple geomeuric condition about the mean curvature of the
boundary curve of the cross section of the capillary tibe. Some particular examples of
physical interest will also be discussed.

Section 3 is devoted to the study of liquid drops, sitting on, or hanging from, a fixed
horizontal plane. The symmetry of the solutions (which can actually ke proved, as a conse-
quence of a general symmetrization argument) now plays the chief role in deriving both the
existence and the regularity of energy-minimizing configurations.When symmetry fails (this
is the case, for example,when the "contact angle" between the drop and the plate is not
constant, or when the supporting surface is not itself symmetric), then more sophisticated
methods must be used. Extensions in this direction will be outlined in section 4.

We refer to the papers listed in the (fairly incomplete) bibliography at the end of the
present paper for a deeper treatment of the subject, as well as for the discussion of
related problems,

2

Functions of bounded variation

Given an open subset Q@ of R", n > 2, we denote by BV(Q) the function space of Le-
besque integrable functions f over n, whose distributional gradient Df is a vector
measure with finite total variatior on &]Dfl will denote the total variation of the
measure Df , evaluated at AcQ
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When A is open we obtain:

J]Dfl = sup[Jf(x)divG(x)dx : G eCé(A;]Rn),]GI <1}
A

As a first result we can prove the lower semicontinuity of the map f + /f|Df! , with
respect to the local convergence on & ; that is, if fj ¢ BV(Q) for every j and

lim I|f.-f|dx =0
j->+w A J

for every AccG (i.e., A open and bounded with A < 9 ), then:

JIDfI < lim inf J [ij]
2 Irre g

Furthermore, we have the following compactness property: if fj ¢BV(Q) , and for every
AccQ and for every 3j it holds

I!ij] < c(A)
A

with ¢(A) independent of j , then there exists a subsequence of ({f.} , locally conver-
ging in Q to some limit function £ .°? J

If feBV() and § has a Lipschitz-continuous boundary 3{ , then we can define the
"trace" of f on 3% (still denoted by f ), which is sumnmable on 392 and satisfies®

j}f( < (1+L2)'/2J|Df] + c(Q)Jlf[ ' (1)
30 2

where L (the Lipschitz constant of 9% ) and c(&) depend only on the geometry of Q but

not on f

By specializing the above definitions and properties to the case when f 1is the charac-
teristic function ¢y of a measurable set E c i , we get a parallel theory of sets of
finite perimeter, where by defir‘tion:

- |
}
Q

"perimeter of E in Q" !D¢El

A straightforward application of the Gauss-Green theorem shows that this guantity coin-
cides with the area of 23E n Q , at least when 23E is a smooth (n-1)-dimensional surface
in @ . The connection between BvV-functions and sets of finite perimeter is given by the
coarea formula:

400
fiof! = J dtJ|D¢F | (2)
t
Q - Q
where feBV(y) and Fe = {x e : £{x) <t}.?
Moreover®, if E = {(x,t) : xe§,t <f(x)} , then it holds

[ iosg! = [/AvTozT

axIR Q2

where the second integral represents the total variation on { of the vector measure, whose

n+1 components are respectively the Lebesgue measure on RI , and the distribution
derivatives Dyf, i=1,...,n . When f 1is Lipschitz-continuous on @ , this yields of
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course the area of the graph of £ over & .

Capillary surfaces in cylindrical vertical tubes

Let us considexr a capillary tube, open at both ends and partially immersed into a liquid:;
for simplicity, we may assume that the liquid rises in the tube, 30 that - in view of the
preceding discussion - the energy corresponding to a certain configuration of the liquid
within the tube, described by the graph a function f > 0 , can be expressed as

Jg) = J/1+[Df|2 - va + 5 sz (3)

a i Y

Here, { (open and bounded in Rr? , with Lipschitz boundary 23} ) denotes the cross
section of the tube, fe¢BV(R), and «,v are physical constants, with kx >~ 0 and O0<vx1.
It is easily seen that f = 0 is the trivial soluticn of ‘?(-) + min , when v < 0 , while
inf 4.} = -~ when v >~ 1 . ’

We can immediately check that a configuration of minimal energy (i.e., a solution to the
problem “I(-) - min ) satisfies the equations

(div Tf(x,y) = vf(x,y) in ©
LTE(x,y) * n(x,y) = v on A

where Tf = _Df ___ ; and n(x,y) cdenotes the outward unit normal to 3¢ at (x,y)

i+ |pff2
This is true if, for example, % is of class ¢ and £ ec?® a '@

This way, we realize that the mcan curvature of a capillary surface is, at any point
(x,y,£(x,y)) ¢ "R, proportional (with constant «x ) to its height above the reference
plane z = 0 , and that Vv corresponds to the cosine of the contact angle between the sur-
face and the walls of the tube.

The classical approach consisted in solving the above system of eg}gtions in the special

case when 1\ was a disc of radius R, and f = f(r), r = (x2 + y?) (axially symmetric
solutions). In this case, one is led to the ordinary differential equation
/ ;fx )
| T = xvrf(r) for 0 <« r « R
W+ g4
r'r

with the boundary corditions: f£r{(0) = 0, £ (R) = v.(1-v2)~1/2
In order to prove the existence of a solution f to the problem ?(-) + min , we make
the following assumpt.ion on the domain &

[ R
}@E < a 1D¢E[ + bJ&E (4)
RINS N N
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~ 0 . From (4) and the coarea formula (2) we get

for every f¢BV{(i) with f > 0 . By introducing this last inequality in (3) we find:

2 W2

THEY > (1-va) [ {DE] +

(
J
0

where |&! denotes the Lebesgue measure of 1 . 1In particular, if v = 1/a we obtain
inf {(-) > -v232|2i /8, wnile if v - 1/a , then for any minimizing sequence f, , satisfy-
ing ‘}(fj) + inf “I(:) , we obtain:

{[ij| ¢ gonst. [f? . const, '

- 1 -wun
0 N
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so that, in view of the results in section 1, we conclude that a subsequence of {fi} con-
verges to a function f , which clearly solves our problem; as a consequence of the strict
convexity of the energy functional, such a solution is in fact unique.

The hypothesis (4) now comes into discussion: clearly, it is implied by the trace esti-
mate (1), so that capillary surfaces always exist for v in the range 0 < v < (1+L5) =¥,
with L = Lipschitz constant of 3% ;* that this is in fact*an "almost necessary" condition
can easily be seen with the aid of some simple examples.’ For a domain § in the form of

a circular sector, no solution with bounded energy can exist when v > (1+4L7) - W (that is,
when 6 + 2y < n , where & 1is the angle of the sector and Yy 1is the contact angle). The
discontinuity at © + 2y = m is also confirmed by physical experimeats.’

On the other hand,® interjor corners do not affect the solution: in the special case when
% satisfies an Internal Sphere Condition of radius R >~ 0 (i.e., when each point in @
belongs to some ball Br ¢ & ), then (4) holds with a = 1 , and it can be shown, by using
a result of Concus and Finn,® that the solution exists for every Vv with 0 < v <1,

In conclusion, we remark that the variational method does not work when x = 0 , i.e. in
the absence of gravity: one can actually show' that the solutions f, , corresponding to
values » > 0 , go uniformly to +o in & , as « = 0%

Sessile drops and pendent drops

The energy of a liquid drop, sitting on the horizontal plane {z=0! in ™' , can be
written in the following way:

z~0 z=0 z~0
where E denotes the region of the half-space {z > 0} occupied by the liquid. The first

integral in (5) represents the area of the free boundary of the drop, the second integral
gives the area of the region of contact, and the third integral corresponds to gravity. As

usual, we assume ~ > 0 and Vv e(-1,11 , since for V = -1 no solution can occur., The
same functicnal, with x ~ 0 , represents the energy of a pendent drop; in both cases, a
volume constraint has to be imposed, namely '] = v >~ 0

Now, it can be shown!® that by replacing each horizontal section of a given configuration
E by a disc of the same area, centered on the z-axis, a new configuration E' results,
which is of less energy than E (in fact, HU(E) = "H.(E') iff E is already axially
symmetric).

From this fact, by using the obvious estimate

J tg ~ | iDégl
z2=0

{
J
z~0

which implies

Ll ~ T+v ( |
FE) J]wE‘

for every E , if ~ > 0 , one gets easily the existence of a minimum of T (*) , when
x>0 . On the other hand, when k4< 0 the situation is completely different, and we can
look only for local solutions of "+, (-) * min , since clearly inf J.(+) = -® in this case.

To this aim, we introduce the following definition: E 1is a local minimum of the energy
functional (a pendent drop) if El = v , and there exist T > 0 and « 61011) such that"

E is contained in the region 0 < z < aTl and, for every F c {0 < z < T with Fl=v,
there holds FAE) £ T (F) .

In order to prove the existence of pendent drops, we start by observing that, when X =0
(that is, in the absence of gravity), the minimum Eg of “%,(-) is a portion of a ball,
completely determined from the data v and Vv . With this in mind, we choose T greater

than the maximum height of E5 and find the solution E, of the problem </ .(.) * min ,
restricted to the configurations E < {0 < z < T} )

An easy calculation shows that E. * E5 as X * 0 a  as a consequence of general
results concerning the convergence of surfaces of prescribed mean curvature, we get that for
ix| small enough, the solution E« 1is actually contained in {0 <« z < ar} for a suitable

ae(0,1,"  thus concluding the proof of the existence of pendent dtTpT of given volume, in
a weak gravitational field. Estimates on the effective smallness of |* are also explici-
tly known.

2/

For example, Giusti' showed that pendent drops exist, if the product |[n]v does not
exceed a constant, which can be written down explicitly,and which depends onlx on the value
of the contact angle between the free surface of the drop and the plane {z=0} .
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Concluding comments

The regularity (analyticity) of the equilibrium surface of a liquid in a capillary tube
can be derived from general regularity results for hypersurfaces of least area or, more ge-
nerally, of prescribed mean curvature in RNI .Y The boundary behaviour of the solutions
has also been studied, and several results in this direction are presently known.™

As far as the regularity of liquid drops is concerned, we note firstly that the free
surface of a drop sitting on a horizontal plane, being rotationally symmetric, can also be
described (locally) as the graph of a suitable function £ , defined on a 2-dimensiocnal
domain. It turrs out that f minimizes a functional of the type:

JJ1+|Df|2 + gravity + fo

where the Lagrange multiplier * takes into account the volume constﬁ?int. From this, the
interior analyticity of the free surface of the drop follows at once.

Secondly, it ﬁ? not difficult to prove that the configuration representing a sessile drop
is a convex set. We then conclude that its free surface is in fact smooth up to the plane
{z=0} , and that the cosine of the contact angle coincides with V

Much more difficult is the study of liquid drops, when symmetry ceases to exist. However,
some partial results have recently been obtained, such as the existence and regularity of
so}utions, corresponding to drops sitting ansor hanging from) a surface 2z = V(x,y) in
R, satisfying V¥(r) =~ +° for r = (x +y") *+* . From this "growth condition at infini-
ty", which however is not satisfied in a number of interesting and still open situations,
the necessary compactness results can easily be derived."

A theorem, which extends to minima of area-like functionals, subject to a volume con-
straint, the regularity theory for minimal boundaries, is now available.'! A technique,
developed in connection with its proof, can also be used to prove the existence of liquid
drops, in rotation around an axis through the center of mass, and held together by surface
tension,

In its simplest formulation, the problem asks for a local minimum of the functional

?ﬁﬂE) = J|D¢E! - m((x°+y3)dxdydz , w >0 (6)
o il
subject to a volume constraint (|E|=1) and to a further constraint about the center of

mass (which must coincide with the origin of the space).

The presence of the kinetic energy excludes, in general, the symmetry of :2ne solutions.
Anyway, following the treatment of the pendent drop problem, one can show!® the existence of
relative minima of the cnergy functional, when w is small enough, that is, when the rota-
tion is sufficiently slow.

The proof of this result, which can only be ocutlined here, proceeds as follows: firstly,
we define E to be a local minimum of the energy functional (6), if there exists
R > Rg = (3/4m) Y such that E c< Cr and, for every admissible F ccCg , satisfying the
above constraints, it holds f (E) < T (F)

Here, Cgp denotes the cylingrical container

Cr = {(x,¥,2) ¢ R’ : x‘+y’ < R‘, |z] < R} .

Then, we can easily prove that for every w > 0, and every R > Ry, there exists a solu-
tion E, to the problem ‘§,(E) » min , restricted to the admissible configurations EcCg .
Such a solution, however, will not generally satisfy the condition E,  c<Cg for a local
minimum,

Next, we observe that for a fixed R > Ry , the solutions E,; we have found in this way,
converge, as w ~ 0%, to the ball Eg = {(x,y,2z) : x’+y’+27 <« R}} ccCg . The local conver-
gence E; - E, 1is unfortunately too weak to conclude that E cc Cg for w small enough.
But we can prove, and this is actually the crucial point of the entire demonstration, that
if o 1is sufficiently small (and positive), then there exists a value r ¢ (Ro,R) such that

From this result, the fact that £Z£,c¢cCp for w small can be proved as foilows. Define:

1

G=Eyn C and a = |E; = Cp|
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and choose F = (1-a)'’G (that is, F 1s constructed by expanding G , with a coefficient
(1-0)** > 1 ). clearly, |F| =1 . Since a + 0 as w * 0 , it is clear that when w is
small, by means of a suitable translation F * F we obtain eventually an admissible confi-
guration F c Cp , whence

T (Ey) < Fy(F) (7)

On the other hand, the difference <,(E,) - 7@(5) can easily be estimated from below by the
quantity:

[1 - (1-ay#] J|D¢G| + const.q + const.' o??
m3

Now, from the Taylor expansion of the coefficient between square brackets, we conclude that
FulE,) - F,(F) > 0 1if o 1is positive and small, which would contradict (7). Therefore,
for w small enough, a must be 0 , so that the corresponding solution E_, 1is contained
in Cy ccCp

In conclusion, we remark that the preceding argument, when used in connection with gene-
ral regularization techniques,?® allows the proof of the analyticity of the solution E, as
well.
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